PORMAN HIS RESTLY OF THE

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name			
Flow-thermal numerical c	alculations		
Course			
Field of study		Year/Semester	
Aerospace Engineering		3/6	
Area of study (specializati	on)	Profile of study	
Onboard systems and airc	raft propulsion	general academic	
Level of study		Course offered in	
First-cycle studies		polish Requirements	
Form of study			
full-time			
Number of hours			
Lecture	Laboratory classes	Other (e.g. online)	
	30		
Tutorials	Projects/seminars		
Number of credit points			
3			
Lecturers			
Responsible for the course	e/lecturer: Re	sponsible for the course/lecturer:	
mgr inż. Joanna Jójka	,		
email: joanna.jojka@put.	ooznan.pl		
tel. 61 665 2218			
Wydział Inżynierii Środow Piotrowo 3 60-965 Poznar	iska i Energetyki ul. i		
Prerequisites			
KNOWLEDGE: Has ordered	d, theoretically founded general l	knowledge covering key issues in the field of	
technical thermodynamics	s, i.e. the theory of thermodynan	nic transformations, heat flow, heat and	

cooling machines

SKILLS: Can obtain information from literature, the Internet, databases and other sources. Is able to integrate obtained information, interpret and draw conclusions from them

SOCIAL COMPETENCES: Can inspire and organize the learning process of others

Course objective

The main aim of the course is to extend the knowledge on thermal processes modeling. Students improve their abilities to conduct numerical analysis of flow and heat transfer processes. They are able

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

to identify the main reasons of discrepancy between analytical calculations, experimental results and numerical solution.

Course-related learning outcomes

Knowledge

Has structured, theoretically founded knowledge of data processing for CFD, optimization of numerical simulations, quantitative and qualitative data analysis, data visualization

Has ordered, theoretically founded general knowledge covering key issues in the field of fluid mechanics, in particular aerodynamics, i.e. ideal liquids and gases, viscous Newtonian and non-Newtonian liquids, theory of heat-flow machines

Has structured, theoretically founded knowledge of mathematics used to analyze results, create mathematical models and their adaptation to a numerical code

Skills

Can prepare and present a short verbal and multimedia presentation devoted to the results of an engineering task

Can carry out elementary technical calculations in the field of fluid mechanics and thermodynamics, such as heat and mass balances, pressure losses in flows around technical flying objects and their modules, select parameters of fans, compressors and turbines for flow systems, as well as calculate thermodynamic waveforms heat machines

Is able to conduct a research experiment using measuring equipment, computer simulations, is able to perform measurements, such as measurements of temperature, velocity and flow rate, pressure and forces, as well as interpret results and draw conclusions

Social competences

Can properly prioritize the implementation of tasks specified by him or others based on available knowledge

Understands the need for critical assessment of knowledge and continuous learning

Is aware of the importance and understands the non-technical aspects and effects of engineering activities, including its impact on the environment, and the associated responsibility for the decisions taken

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Laboratory classes – evaluation of reports prepared on each exercises, presentation of solved technical problem, result discussion with group

Programme content

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Theoretical and practical introduction to numerical methods and calculations. Modeling of the heat and mass transfer processes with a use of knowledge from thermodynamics and fluid mechanics. Data analysis. Calculation validation with experimental data. Results discussion.

Teaching methods

Laboratory classes - demonstation of case study with extended explanation and tutorial, followed by student work on solving of the given task

Bibliography

Basic

1. Ansys Fluent User/Theory Guide,

2. Maciej Kryś, Mateusz Pawłucki, CFD dla inżynierów. Praktyczne ćwiczenia na przykładzie systemu ANSYS Fluent, 2020.

Additional

1. Ferziger, Joel H., Peric, Milovan, Street, Robert L., Computational Methods for Fluid Dynamics.

Breakdown of average student's workload

	Hours	ECTS
Total workload	65	3,0
Classes requiring direct contact with the teacher	32	1,5
Student's own work (literature studies, preparation for laboratory	32	1,5
classes, preparation for test, making reports, solving technical		
problems, consultations) ¹		

¹ delete or add other activities as appropriate